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Abstract

An algorithm for the generation of non-uniform unstructured grids on ellipsoidal geometries is described. This technique is de-
signed to generate high quality triangular and polygonal meshes appropriate for general circulation modelling on the sphere,
including applications to atmospheric and ocean simulation, and numerical weather predication. Using a recently developed
Frontal-Delaunay-refinement technique, a method for the construction of high-quality unstructured ellipsoidal Delaunay trian-
gulations is introduced. A dual polygonal grid, derived from the associated Voronoi diagram, is also optionally generated as a
by-product. Compared to existing techniques, it is shown that the Frontal-Delaunay approach typically produces grids with near-
optimal element quality and smooth grading characteristics, while imposing relatively low computational expense. Initial results
are presented for a selection of uniform and non-uniform ellipsoidal grids appropriate for large-scale geophysical applications. The
use of user-defined mesh-sizing functions to generate smoothly graded, non-uniform grids is discussed.
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1. Introduction

Planetary climate simulation and numerical weather predication are two of the most computationally challeng-
ing tasks currently under consideration. General circulation models typically involve the solution of a large coupled
set of non-linear transport equations on very high-resolution spatial grids. The complexity of these models is often
significant, with the discrete systems typically involving dozens of independent variables, including fluid momen-
tum, thermodynamic state, such as temperature, salinity and precipitable water, atmospheric aerosols and oceanic
biogeochemical tracers. While many such models have previously been developed using structured discretisations of
the underlying spherical geometry, recent interest in the use of unstructured general circulation models necessitates
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Fig. 1. Semi-structured meshing for the sphere, showing a cubed-sphere grid on the left, and an icosahedral grid on the right.

the development of effective unstructured mesh generators that cater to this class of numerical scheme. This study
investigates the applicability of a recently developed Frontal-Delaunay surface meshing algorithm for this task.

1.1. Related Work

While a simple structured mesh for the sphere can be obtained by building a uniform discretisation in spherical
coordinates, the resulting ‘lat-lon’ grid is inappropriate for numerical simulation, incorporating a pair of grid singu-
larities at the poles. A majority of current generation general circulation models, (i.e. [1,2]), are instead based on
a semi-structured discretisation known as the cubed-sphere. According to the this paradigm, the spherical surface is
decomposed topologically into an array of six quadrilateral ‘faces’, with each face in turn decomposed into a simple
structured curvilinear grid. The cubed-sphere topology is illustrated in Figure 1. In addition to the cubed-sphere con-
figuration, a second class of semi-structured spherical grid can be obtained through icosahedral-type decompositions.
In such cases, the primary grid is a triangulation, though the dual polygonal grid is often also used. Icosahedral-type
grids are also illustrated in Figure 1.

Recent general circulations models, specifically the Model for Predication Across Scales (MPAS) [3–5], has fo-
cused on the use of locally refined, unstructured polygonal grids to achieve multi-resolution representations of both
atmospheric and oceanic dynamics. The current study explores the development of an algorithm for the generation
of high resolution spheroidal Delaunay triangulations and associated Voronoi diagrams appropriate for such climate
models. Note that in addition to the high-resolution requirements, the sensitivity of the underlying numerical schemes
employed in general circulation models necessitates the construction of meshes with near-optimal mesh quality.

2. A Frontal-Delaunay-Refinement Grid-Generator

The task is to generate very high-quality meshes for planetary atmospheres and/or oceans. Grids are a semi-
structured ‘2.5D’ configuration, in which a two-dimensional unstructured grid generated over the spheroidal surface
is extruded in the radial direction to form a semi-structured ‘stack’ of fluid layers. The layer-wise grid is set-up to
follow the planetary topography – typically represented as a set of elevations defined from a reference spheroid. In a
general form, this reference surface can be expressed in terms of a triaxial ellipsoid

3∑
i=1

(xi − ci)2

r2
i

= 1 (1)

where the xi’s are the Cartesian coordinates in a locally aligned coordinate system, the point (c1, c2, c3) is the centre
of the ellipsoid, and the scalars (r1, r2, r3) are its principal radii.
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2.1. Mesh-size Functions

Local mesh density is controlled via a user-specified mesh-size function h̄(x) defined on a background grid. Con-
tinuous sizing values are computed using an interpolation scheme. In the current study, mesh-size functions are com-
posed using structured ‘lat-lon’ grids and bilinear interpolation – providing support for mesh-size functions derived
from high-resolution satellite altimetry data [6].

2.2. Delaunay Mesh Generation

A high-quality triangular surface mesh is generated on the ellipsoidal reference surface (2) using a ‘Frontal-
Delaunay’ variant of the conventional restricted Delaunay-refinement algorithm [7–11]. This technique is described
by the author in detail in [12] and differs from standard Delaunay-refinement approaches in terms of its placement of
Steiner vertices. Specifically, the Frontal-Delaunay variant employs various off-centre techniques [13,14], designed
to position refinement points such that element-quality and mesh-size constraints are satisfied in a locally optimal
fashion. Previous studies have shown that such an approach typically leads to substantial improvements in mean
element-quality and mesh smoothness. Additionally, it has been demonstrated that the this method inherits much of
the theoretical robustness of standard Delaunay-refinement techniques – offering guaranteed convergence, topological
correctness, and a minimum angle guarantee.

Given a user-defined mesh-size function h̄(x) and an upper-bound on the element radius-edge ratios ρ̄, the Frontal-
Delaunay algorithm proceeds to sample the ellipsoidal surface by refining any surface triangle that violates either
the mesh-size or element-quality constraints. Refinement is accomplished by inserting a new Steiner vertex at the
off-centre point associated with a given element. Refinement continues until all constraints are satisfied. Upon ter-
mination, the resulting surface mesh is guaranteed to contain nicely shaped surface triangles, satisfying both the
radius-edge constraints ρ( fi) ≤ ρ̄ and the mesh-size limits h( fi) ≤ h̄(x f ) for all surface triangles fi in the mesh.

As a restricted Delaunay-refinement approach, a full three-dimensional Delaunay tetrahedralisation Del(X) is in-
crementally maintained throughout the surface meshing phase. The set of restricted surface facets Del |Σ(X) that
conform to the underlying ellipsoidal surface are expressed as a subset of the tetrahedral faces Del |Σ(X) ⊆ Del(X).
In an effort to minimise the expense associated with maintaining the full topological tessellation, an additional scaf-
folding vertex xs is initially inserted at the centre of the ellipsoid. This has the effect of simplifying the resulting
topological structure, with the tetrahedral elements emanating radially outward from xs.

2.3. Mesh Optimisation

While the Frontal-Delaunay-refinement algorithm typically produces surface triangulations of very high-quality,
these tessellations can be further improved through a mesh optimisation step. In this study, a spring-based relaxation
strategy, adapted from the DISTMESH algorithm of Persson and Strang [15], is used to optimise vertex positions. Given
an initial vertex distribution x0, generated using the Frontal-Delaunay-refinement algorithm described previously,
the relaxation procedure seeks updates to the vertex positions in order to achieve an approximate force-equilibrium
between the mesh vertices

xk+1 = xk + ∆t F(xk) , Fi(xk) =
∑
j ∈Ri

Fi, j(xk) · êi, j , Fi, j(xk) = β
(
li, j(xk) − h̄i, j(xk)

)
. (2)

Here Ri is the set of vertices adjacent to the i-th vertex, li, j(xk) is the length of the edge between the vertices xi and x j,
h̄i, j(xk) is the value of the mesh-size function computed at the associated edge midpoint, and êi, j is the corresponding
unit edge direction vector. The spring constant β is set to unity in this study. Noting that (2) does not constrain
vertices to remain on the ellipsoidal reference surface, an additional projection operator is used within each time-step
to enforce the surface constraints exactly. Incremental modifications to the underlying Delaunay mesh topology are
enacted throughout the iteration process, ensuring that the mesh remains Delaunay.
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Fig. 2. A multi-resolution polygonal grid of the world ocean, generated using the Frontal-Delaunay-refinement algorithm described previously. The
non-uniform mesh-size function is computed based on the local gradient in bathymetry, ensuring that regions of rapid change are better resolved.

2.4. Construction of Voronoi Cells

Following the generation and optimisation of the surface triangulation, a dual polygonal grid is derived from the
associated Voronoi complex. The surface Voronoi diagram contains a grid-cell for each vertex in the underlying
surface triangulation, where each grid-cell is a closed, non-planar polygonal region that connects the centres of the
Surface-Delaunay-Balls associated with the triangles adjacent to the central vertex.

3. Results & Discussions

Initial investigations have been conducted using the Frontal-Delaunay approach described previously. A range of
very high-resolution spherical grids have been generated using both uniform and non-uniform mesh-size functions. A
medium resolution polygonal mesh of the world ocean, generated using a bathymetrically refined mesh-size function
is shown in Figure 2. While the performance of the present algorithm appears to be reasonable, generating in excess
of 10 million elements per minute, future work will focus on further improvements to performance, including the
investigation of a dedicated spherical Delaunay triangulation routine [16], and the development of parallel meshing
techniques.
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